Small interfering RNA against BCR-ABL transcripts sensitize mutated T315I cells to nilotinib.

نویسندگان

  • Michael Koldehoff
  • Lambros Kordelas
  • Dietrich W Beelen
  • Ahmet H Elmaagacli
چکیده

BACKGROUND Selective inhibition of the BCR-ABL tyrosine kinase by RNA interference has been demonstrated in leukemic cells. We, therefore, evaluated specific BCR-ABL small interfering RNA silencing in BCR-ABL-positive cell lines, including those resistant to imatinib and particularly those with the T315I mutation. DESIGN AND METHODS The factor-independent 32Dp210 BCR-ABL oligoclonal cell lines and human imatinib-resistant BCR-ABL-positive cells from patients with leukemic disorders were investigated. The effects of BCR-ABL small interfering RNA or the combination of BCR-ABL small interfering RNA with imatinib and nilotinib were compared with those of the ABL inhibitors imatinib and nilotinib. RESULTS Co-administration of BCR-ABL small interfering RNA with imatinib or nilotinib dramatically reduced BCR-ABL expression in wild-type and mutated BCR-ABL cells and increased the lethal capacity. BCR-ABL small interfering RNA significantly induced apoptosis and inhibited proliferation in wild-type (P<0.0001) and mutated cells (H396P, T315I, P<0.0001) versus controls. Co-treatment with BCR-ABL small interfering RNA and imatinib or nilotinib resulted in increased inhibition of proliferation and induction of apoptosis in T315I cells as compared to imatinib or nilotinib alone (P<0.0001). Furthermore, the combination of BCR-ABL small interfering RNA with imatinib or nilotinib significantly (P<0.01) reversed multidrug resistance-1 gene-dependent resistance of mutated cells. In T315I cells BCR-ABL small interfering RNA with nilotinib had powerful effects on cell cycle distribution. CONCLUSIONS Our data suggest that silencing by BCR-ABL small interfering RNA combined with imatinib or nilotinib may be associated with an additive antileukemic activity against tyrosine kinase inhibitor-sensitive and resistant BCR-ABL cells, and might be an alternative approach to overcome BCR-ABL mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation.

MK-0457 (VX-680) is a small-molecule aurora kinase (AK) inhibitor with preclinical antileukemia activity. The T315I BCR-ABL mutation mediates resistance to imatinib, nilotinib, and dasatinib. MK-0457 has in vitro activity against cells expressing wild-type or mutated BCR-ABL, including the T315I BCR-ABL mutation. Three patients with T315I abl-mutated chronic myeloid leukemia (CML) or Philadelph...

متن کامل

Mutation-specific control of BCR-ABL T315I positive leukemia with a recombinant yeast-based therapeutic vaccine in a murine model.

Chromosomal translocations generating the BCR-ABL oncogene cause chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemia. The BCR-ABL(T315I) mutation confers drug resistance to FDA-approved targeted therapeutics imatinib mesylate, dasatinib, and nilotinib. We tested the ability of a recombinant yeast-based vaccine expressing the T315I-mutated BCR-ABL antigen to stimulate an ...

متن کامل

The quantitative level of T315I mutated BCR-ABL predicts for major molecular response to second-line nilotinib or dasatinib treatment in patients with chronic myeloid leukemia.

The BCR-ABL T315I mutation causes resistance to imatinib, nilotinib and dasatinib in chronic myeloid leukemia. Forty BCR-ABL positive patients with imatinib resistance were analyzed for T315I mutated clones after six months on nilotinib or dasatinib treatment by quantitative allele-specific ligation polymerase chain reaction with a sensitivity of 0.05%. Ligation polymerase chain reaction reveal...

متن کامل

The novel Aurora A kinase inhibitor MLN8237 is active in resistant chronic myeloid leukaemia and significantly increases the efficacy of nilotinib

Novel therapies are urgently needed to prevent and treat tyrosine kinase inhibitor resistance in chronic myeloid leukaemia (CML). MLN8237 is a novel Aurora A kinase inhibitor under investigation in multiple phase I and II studies. Here we report that MLN8237 possessed equipotent activity against Ba/F3 cells and primary CML cells expressing unmutated and mutated forms of breakpoint cluster regio...

متن کامل

SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib.

Imatinib inhibits Bcr-Abl, the oncogenic tyrosine kinase that causes chronic myeloid leukemia. The second-line inhibitors nilotinib and dasatinib are effective in patients with imatinib resistance resulting from Bcr-Abl kinase domain mutations. Bcr-Abl(T315I), however, is resistant to all Abl kinase inhibitors in clinical use and is emerging as the most frequent cause of salvage therapy failure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Haematologica

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 2010